Conceptual Model

In the most general sense, a model is anything used in any way to represent anything else. Some models are physical objects, for instance, a toy model which may be assembled, and may even be made to work like the object it represents. Whereas, a conceptual model is a model that exists only in the mind. Conceptual models are used to help us know and understand the subject matter they represent.

The term conceptual model may be used to refer to models which are formed after a conceptualization process in the mind. Conceptual models represent human intentions or semantics. Conceptualization from observation of physical existence and conceptual modeling are the necessary means human employ to think and solve problems. Concepts are used to convey semantics during various natural languages based communication. Since a concept might map to multiple semantics by itself, an explicit formalization is usually required for identifying and locating the intended semantic from several candidates to avoid misunderstandings and confusions in conceptual models.


"Conceptual modeling is the activity of formally describing some aspects of the physical and social world around us for the purposes of understanding and communication."

A conceptual model's primary objective is to convey the fundamental principles and basic functionality of the system in which it represents. Also, a conceptual model must be developed in such a way as to provide an easily understood system interpretation for the models users. A conceptual model, when implemented properly, should satisfy four fundamental objectives.

  • Enhance an individuals understanding of the representative system
  • Facilitate efficient conveyance of system details between stakeholders
  • Provide a point of reference for system designers to extract system specifications
  • Document the system for future reference and provide a means for collaboration


As systems have become increasingly complex, the role of conceptual modeling has dramatically expanded. With that expanded presence, the effectiveness of conceptual modeling at capturing the fundamentals of a system is being realized. Building on that realization, numerous conceptual modeling techniques have been created. These techniques can be applied across multiple disciplines to increase the users understanding of the system to be modeled.[6] A few techniques are briefly described in the following text, however, many more exist or are being developed. Some commonly used conceptual modeling techniques and methods include; Workflow Modeling, Workforce Modeling, Rapid Application Development, Object Role Modeling, and Unified Modeling Language (UML).

Data Flow Modeling

Data flow modeling (DFM) is a basic conceptual modeling technique that graphically represents elements of a system. DFM is a fairly simple technique, however, like many conceptual modeling techniques, it is possible to construct higher and lower level representative diagrams. The data flow diagram usually does not convey complex system details such as parallel development considerations or timing information, but rather works to bring the major system functions into context. Data flow modeling is a central technique used in systems development that utilizes the Structured Systems and Analysis and Design Method (SSADM).

Entity Relationship Modeling

Entity-relationship modeling (ERM) is a conceptual modeling technique used primarily for software system representation. Entity-relationship diagrams, which are a product of executing the ERM technique, are normally used to represent database models and information systems. The main components of the diagram are the entities and relationships. The entities can represent independent functions, objects, or events. The relationships are responsible for relating the entities to one another. To form a system process, the relationships are combined with the entities and any attributes needed to further describe the process. Multiple diagramming conventions exist for this technique; IDEF1X, Bachman, and EXPRESS, to name a few. These conventions are just different ways of viewing and organizing the data to represent different system aspects.

Event-Driven Process Chain

The event-driven process chain (EPC) is a conceptual modeling technique which is mainly used to systematically improve business process flows. Like most conceptual modeling techniques, the event driven process chain consists of entities/elements and functions that allow relationships to be developed and processed. More specifically, the EPC is made up of events which define what state a process is in or the rules by which it operates. In order to progress through events, a function/ active event must be executed. Depending on the process flow, the function has the ability to transform event states or link to other event driven process chains. Other elements exist within an EPC, all of which work together to define how and by what rules the system operates. The EPC technique can be applied to business practices such as resource planning, process improvement, and logistics.

Joint Application Development

The Dynamic Systems Development Method (DSDM) uses a specific process called Joint Application Design (JAD) to conceptually model a systems life cycle. JAD is intended to focus more on the higher level development planning that precedes a projects initialization. The JAD process calls for a series of workshops in which the participants work to identify, define, and generally map a successful project from conception to completion. This method has been found to not work well for large scale applications, however smaller applications usually report some net gain in efficiency.

Place/ Transition Net

Also known as Petri Nets, this conceptual modeling technique allows a system to be constructed with elements that can be described by direct mathematical means. The petri net, because of its nondeterministic execution properties and well defined mathematical theory, is a useful technique for modeling concurrent system behavior, i.e. simultaneous process executions.

State Transition Modeling

State transition modeling makes use of state transition diagrams to describe system behavior. These state transition diagrams use distinct states to define system behavior and changes. Most current modeling tools contain some kind of ability to represent state transition modeling. The use of state transition models can be most easily recognized as logic state diagrams and directed graphs for finite state machines.

Technique Evaluation and Selection

Because the conceptual modeling method can sometimes be purposefully vague to account for a broad area of use, the actual application of concept modeling can become difficult. To alleviate this issue, and shed some light on what to consider when selecting an appropriate conceptual modeling technique, the framework proposed by Gemino and Wand will be discussed in the following text. However, before evaluating the effectiveness of a conceptual modeling technique for a particular application, an important concept must be understood; Comparing conceptual models by way of specifically focusing on their graphical or top level representations is shortsighted. Gemino and Wand make a good point when arguing that the emphasis should be placed on a conceptual modeling language when choosing an appropriate technique. In general, a conceptual model is developed using some form of conceptual modeling technique. That technique will utilize a conceptual modeling language that determines the rules for how the model is arrived at. Understanding the capabilities of the specific language used is inherent to properly evaluating a conceptual modeling technique, as the language reflects the techniques descriptive ability. Also, the conceptual modeling language will directly influence the depth at which the system is capable of being represented, whether it be complex or simple.

Mental model

Further information: Mental model, Representation (psychology), and Cognitive model In cognitive psychology and philosophy of mind, a mental model is a representation of something in the mind, but a mental model may also refer to a nonphysical external model of the mind itself.

Metaphysical models

A metaphysical model is a type of conceptual model which is distinguished from other conceptual models by its proposed scope. A metaphysical model intends to represent reality in the broadest possible way. This is to say that it explains the answers to fundamental questions such as whether matter and mind are one or two substances; or whether or not humans have free will. Conceptual model vs. semantics model

Entity-relationship model

In software engineering, an entity-relationship model (ERM) is an abstract and conceptual representation of data. Entity-relationship modeling is a database modeling method, used to produce a type of conceptual schema or semantic data model of a system, often a relational database, and its requirements in a top-down fashion. Diagrams created by this process are called entity-relationship diagrams, ER diagrams, or ERDs.

Entity-relationship models have had wide application in the building of information systems intended to support activities involving objects and events in the real world. In these cases they are models that are conceptual. However, this modeling method can be used to build computer games or a family tree of the Greek Gods, in these cases it would be used to model concepts.

Domain model

A domain model is a type of conceptual model used to depict the structural elements and their conceptual constraints within a domain of interest (sometimes called the problem domain). A domain model includes the various entities, their attributes and relationships, plus the constraints governing the conceptual integrity of the structural model elements comprising that problem domain. A domain model may also include a number of conceptual views, where each view is pertinent to a particular subject area of the domain or to a particular subset of the domain model which is of interest to a stakeholder of the domain model. Like entity-relationship models, domain models can be used to model concepts or to model real world objects and events.

Quality Service

“Quality in a service or product is not what you put into it. It is what the client or customer gets out of it.” – Peter Drucker

Productivity & Efficiency

“Productivity and efficiency can be achieved only step by step with sustained hard work, relentless attention to details and insistence on the highest standards of quality and performance.” - J. R. D. Tata

Strong Determination

”An invincible determination can accomplish almost anything and in this lies the great distinction between great men and little men.” --Thomas Fuller


"Do you know the difference between education and experience? Education is when you read the fine print; experience is what you get when you don't." -- Pete Seeger

Good Judgement

"Good judgment comes from experience, and experience comes from bad judgment." --Barry LePatner

Create Success

"The majority of men meet with failure because of their lack of persistence in creating new plans to take the place of those which fail.” --Napoleon Hill

Invest in Thought

The intellectual commitment of our development team is central to the datametrics ability to achieve its mission: to develop principled, innovative thought leaders in global communities.


Customer Focus

We approach each business relationship with the mindset that all parties involved have a common goal and we will reach that goal faster working in collaboration as partners.


High Quality Solutions

An understanding that quality begins the day the project is accepted. Requirements need to be understood and validated. Key factors include making sure that the requirements


Utmost Integrity

If our customers are the foundation of our business, then integrity is the cornerstone. Everything we do is guided by what is right. We live by the highest ethical standards.